SUMMARY Machine Experiments

Wolfram Fischer

RHIC Retreat Close-Out Snyder Hall 28 March 2002

Overview

- Only machine experiments with likely impact on operation in the next run were discussed
- Emphasis on new problems and novel techniques
- Problems considered:
 - Transition crossing
 - Non-linear IR correction
 - Transverse and longitudinal instabilities
 - Beam-beam effects
 - Polarized beam manipulations
 - Pressure rise
 - Organization of machine experiments

C. Montag – Transition Crossing

Problems

- Partial beam loss at transition with high intensity
- Emittance growth
- Instabilities

Proposed measurements

- $-\alpha_1$ (f_s vs. radial loop setting)
- Longitudinal emittance vs. γ-jump amplitude and speed

- Larger intensities at store
- Smaller emittances at store

V. Ptitsyn – Non-Linear IR Correction

Problems

- Beam losses on ramp,
 particularly at transition
- Beam lifetime with β *=2m(1m) low, especially for Yellow

Proposed measurements

- Check effectiveness of local IR correctors with tune-vs.-bump amplitude method
- 0.2 and 0.25 resonance correction

- Reduced losses during ramp
- Better beam lifetimes in stores
- Less emittance growth in stores

M. Blaskiewicz – Instabilities

Problems

- Collective effects observed in long. and transv. planes
- Lead to particle loss and emittance blow-up

Proposed measurements

- Improved measurements for long. and transv. wake potentials
- Better data acquisition at transition

Possible benefits for operation

- Future operation with higher intensities
- Reduced emittance growth

Proton bunch after 40min in store

W. Fischer – Beam-Beam Effects

Problems

- Emittance growth in store
- Coherent BB modes

Proposed measurements

- Emittance growth w/o BB,
 with transverse offset
- Study coherent mode suppression (tunes, tune spread, intensity)

Possible benefits for operation

Running closer to beam-beam limit

M. Bai – Polarized Beam Manipulation

Problems

- Need to flip spin direction
- Need to measure spin tune

Proposed measurements

- Spin flipping efficiency
 with AC dipole, both rings
- Calibrate snakes with spin tune measurement
- Polarization profile

- Achieve full spin flip in operation
- Improved confidence in CNI polarimeter

S.Y. Zhang – Pressure Rise

Problems

Pressure rise with intense beams

Proposed measurements

- Coherent tune shift along train
- Electron cloud densities from special detectors, in region with solenoids (on/off)
- Correlation with pressure rise

- Operation with higher bunch charge
- Operation with 112 bunches

F. Pilat – Benefits of Beam Experiments

Beam Experiments →

Machine Developments →

Machine Production (Luminosity)

- Only way to sustain a stronger than linear increase
 (Δt linear, limited, expensive)
- **Proposal for "New Deal"** in 2003
 - Keep 1 BEx session/week (12h)+ Friday meeting
 - Regular scheduling for BEx activities
 - Compromise on length of beam experiments rather than frequency

